Basic

Definition

x

t

m

\(v=\frac{\Delta x}{\Delta t}=\dot x\)

\(a=\frac{\Delta v}{\Delta t}=\dot v=\ddot x\)

\(F=m\cdot a\)

Corollary

\(x=\Sigma v_i \Delta t=v_0 t+\frac{1}{2}a t^2\)

\(I=F\cdot t=m\cdot a\cdot t=m\cdot v\)

\(E_k=F\cdot x=\Sigma F\cdot v_t\cdot \Delta t=\Sigma m\cdot a\cdot v_t\cdot \Delta t=\Sigma m\cdot v\cdot v_t=\frac{1}{2}m v^2\)

\(v_1^2-v_0^2=2ax\) <=> \(E_{k1}-E_{k0}=W\)